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® Motivations
® Current experimental constraints on two possible sterile neutrino models

® Which future experiments can find sterile neutrinos at high Am??
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® Proposed mechanisms to generate neutrino masses often involve adding right-
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® Light sterile neutrinos can be hard to find experimentally, but not theoretically!
Just pick your favorite theoretical direction. . .

e Grand Unified Theories
Mohapatra, hep-ph/0107264, McKeller et al., hep-ph/0106121,. ..

e SuperSymmetry

e [xtra-Dimensions
loannisian et al., PRD63 073002, Ma et al., hep-ph/0006340,. . .

Dvali et al., hep-ph/9810257, Arkhani-Amed et al., hep-ph/0006312,. ..



Experimental Motivations

® There are three experimental hints pointing toward neutrino oscillations:
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® Am?, + Am?2, # Am?,y, = need more than three massive neutrinos?



The LSND Result (7, — 7.)
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(Bandyopadhyay et al., PLB 559, 2003)
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® CPT-conserving models, with sterile neutrinos:

Model: (242) (3+1) (3+2) ,etc.
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If LSND is due to oscillations...

® CPT-conserving models, with sterile neutrinos:

Model: (242) (3+1) (3+2) ,etc.
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e CPT-violating models, with no sterile neutrinos:
(G. Barenboim, “Is nothing sacred? CPT
violation in neutrino physics”, this session)
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Model:

V mMasses

e CPT-violating models, with no sterile neutrinos:
(G. Barenboim, “Is nothing sacred?
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If LSND is due to oscillations...

® CPT-conserving models, with sterile neutrinos:
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Combined analysis of SBL experiments

® Short-baseline experiments on

1. v, disappearance (CCFR84, CDHS)
2. U, disappearance (Bugey, CHOOZ)
3. UV, — Ve appearance (LSND, KARMEN)

probe the same Am? range and the same matrix elements:
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® Short-baseline experiments on

1. v, disappearance (CCFR84, CDHS)
2. U, disappearance (Bugey, CHOOZ)
3. UV, — Ve appearance (LSND, KARMEN)

probe the same Am? range and the same matrix elements:
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e Only LSND demands UeqU,q # 0, or UesU,5 # 0, ete.

® [s LSND consistent with the upper limits on active-sterile mixing at high Am?
derived by the null short-baseline experiments (NSBL)?

e NSBL = Bugey + CHOOZ + CCFR84 + CDHS + KARMEN



(341) models and SBL experiments
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(341) models and SBL experiments
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® Three parameters probed: Am3,, Ues, U,y (SBL only: can assume Am3; = Am3, = 0)

® Oscillation probability:

P(v, — ) = AUZU}, sin*(1.27TAmj, L/ E)

® Two-neutrino approximation is satisfied = define:

Am? = Amj,,  sin®20,, = 4U,U},



Treat NSBL and LSND data sets separately

(341) case
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e NSBL and LSND data sets are only marginally consistent with each other



Combine NSBL and LSND data sets
(341) case

® Assuming statistical compatibility of all SBL results, a joint analysis gives:
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® Best-fit: Am? =238 eV?2, Uy = 0.13, Uy = 0.22



(34+2) models and SBL experiments
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(34+2) models and SBL experiments
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® Six parameters probed: Am?2,, Uey, Uu, AmZ,, Ues, Uys
® More than one Am? contributes to the oscillation probability:
P(0y — Ue) = 4(UeaUps + UesU,u5) (UeaUpa sin® zay + UesUys sin® x51) — 4UesU,uUesU,us sin® 54
xji = 1.27Am} L/ E

® Use NSBL data to derive the upper limits on the 7, — 7. probability averaged
over the LSND L/FE distribution:

prsnp = (P(Uy — Ue))LSND



Compare (3+42) and (341) models

e Allowed values for the LSND oscillation probability (0 = confidence level value):
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Compare (3+42) and (341) models

e Allowed values for the LSND oscillation probability (0 = confidence level value):
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® T'wo sterile neutrino models fit SBL data significantly better
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Combine NSBL and LSND data sets
(34-2) case

® (Am?2,, Am2,) allowed region from joint NSBL+LSND analysis:
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® Best-fit:
Am3; =091 eV? Uy =0.12, Uy = 0.17, Am2, = 21.5 eV U = 0.07, U, = 0.22



Combine NSBL and LSND data sets

(34-2) case
® (Am?2,, Am2,) allowed region from joint NSBL+LSND analysis:
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Cosmology and massive neutrinos

e Standard cosmology (ACDM) assumes three active, massless, neutrinos, and
no lepton asymmetry

® Observations ~ agree with predictions of standard cosmology:

1. Primordial Helium (and Deuterium) abundance
2. Amplitude and shape of large scale power spectrum
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no lepton asymmetry

® Observations ~ agree with predictions of standard cosmology:
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Cosmology and massive sterile neutrinos (cont’d)

® Predictions of standard cosmology assume that sterile neutrino species are
present in the early Universe in the same abundances as the active species
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in the calculations



Cosmology and massive sterile neutrinos (cont’d)

Predictions of standard cosmology assume that sterile neutrino species are
present in the early Universe in the same abundances as the active species

Several mechanisms have been proposed that would suppress the sterile
neutrino abundances in cosmology
(for a review, see: Abazajian, astro-h/0205238)

Full oscillation formalism (multi-flavor, matter resonances, etc.) still missing
in the calculations

Cosmological constraints on sterile neutrinos should be taken with caution,
and in any case complemented with terrestrial experiments (where the
interpretation of data is easier)



Future sterile neutrino searches at high Am?

® The unitarity of the mixing matrix means that ~ all of the mixing parameters
measurements constrain active-sterile mixing, at least indirectly:

e Improve limits on (Ve — Vs)/(Ve — Vyr) at Améolar

(Example: next-generation, real-time pp solar neutrino experiments)

e Improve limits on (VM — 1/5) / (VM — I/T) at Amgtm with LBL accelerator

experiments (see: H. Gallagher, “MINOS Experiment Update”, this session)

e Improve reactor limits on v, — UV, over a wide Am? range
(Example: expected sensitivity of next-generation experiments)
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® The unitarity of the mixing matrix means that ~ all of the mixing parameters
measurements constrain active-sterile mixing, at least indirectly:

e Improve limits on (Ve — Vs)/(Ve — Vyr) at Améolar

(Example: next-generation, real-time pp solar neutrino experiments)

e Improve limits on (VM — 1/5) / (VM — I/T) at Amgtm with LBL accelerator

experiments (see: H. Gallagher, “MINOS Experiment Update”, this session)

e Improve reactor limits on v, — UV, over a wide Am? range
(Example: expected sensitivity of next-generation experiments)

® Direct searches at high Am?:

o Test 1, — Vg signal at Am?Zqp: MiniBooNE

e Improve limits on v/, — Vs, Vy — V7 at Am%SND with SBL accelerator experiments
(Example: v, — v, sensitivity for FINeSE+MiniBooNE)

e Amiyp range is not known precisely = several SBL experiments help
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Summary

Sterile neutrinos can explain the LSND result (if due to oscillations), and might
explain the origin of neutrino masses

Combining LSND with other oscillation results provides hints where to look
Based on a combined analysis of SBL data, (3+1) models are marginally allowed

(3+2) models: additional active-sterile mixing from a second massive sterile
neutrino describes existing SBL results without any “statistical stretches”

Conclusive test of the LSND evidence for oscillations in 2005, with the
MiniBooNE v, — 1, result

If LSND is confirmed, additional v,, — (Ve, V,, Vr) measurements at SBL
are very important to disentangle the neutrino mass and mixing pattern



v, disappearance sensitivity of future reactor
experiments
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® Sce also: K. M. Heeger, “Reactor Neutrino Measurements of 6137, NEU, this
session



v, — Ve appearance sensitivity in MiniBooNE

e T. L. Hart, “Neutrino Oscillation Search at MiniBooNE”, NEU, Tuesday
session

® MiniBooNE will address in a definite and independent way the LSND evidence
for v,, — Ve, oscillations
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v. disappearance sensitivity with
MiniBooNE 4+ FINeSE
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e M. O. Wascko, “Neutrino Physics at FINeSE”, NEU, this session



